Entire nodal solutions to the critical Lane-Emden system
نویسندگان
چکیده
منابع مشابه
Separable solutions of quasilinear Lane-Emden equations
For 0 < p − 1 < q and either ǫ = 1 or ǫ = −1, we prove the existence of solutions of −∆pu = ǫu q in a cone CS , with vertex 0 and opening S, vanishing on ∂CS , under the form u(x) = |x|ω( x |x|). The problem reduces to a quasilinear elliptic equation on S and existence is based upon degree theory and homotopy methods. We also obtain a non-existence result in some critical case by an integral ty...
متن کاملVariational approach to the Lane-Emden equation
By the semi-inverse method, a variational principle is obtained for the Lane–Emden equation, which gives much numerical convenience when applying finite element methods or Ritz method. 2002 Elsevier Science Inc. All rights reserved.
متن کاملOn Nodal Solutions to Generalized Emden-fowler Equations
We introduce a new variational method in order to derive results concerning existence and nodal properties of solutions to superlinear equations, and we focus on applications to the equation where h is a Caratheodory function which is odd in u. In the particular case where h is radially symmetric, we prove, for given n 2 N, the existence of a solution having precisely n nodal domains, whereas s...
متن کاملOn Stable Solutions of the Fractional Henon-lane-emden Equation
We derive a monotonicity formula for solutions of the fractional Hénon-Lane-Emden equation (−∆)u = |x|a|u|p−1u R where 0 < s < 2, a > 0 and p > 1. Then we apply this formula to classify stable solutions of the above equation.
متن کاملNon-radial Singular Solutions of Lane-emden Equation in R
We obtain infinitely many non-radial singular solutions of LaneEmden equation ∆u + u = 0 in RN\{0}, N ≥ 4 with N + 1 N − 3 < p < pc(N − 1) by constructing infinitely many radially symmetric regular solutions of equation on SN−1 ∆SN−1w − 2 p− 1 [ N − 2− 2 p− 1 ] w + w = 0.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Partial Differential Equations
سال: 2019
ISSN: 0360-5302,1532-4133
DOI: 10.1080/03605302.2019.1670676